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Energy spectra for non-linear oscillators with broken symmetry 
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Physikalisches Institut, Universitat Bayreuth, D-8580 Bayreuth, Federal Republic of 
Germany 

Received 21 May 1987 

Abstract. The  statistical properties of energy spectra of a classical chaotic system are  
investigated, in particular for the effect of broken symmetry. Small symmetry breaking 
terms produce significant deviations from a Wigner distribution and  also characteristic 
differences to the A, function of the Gaussian orthogonal ensemble. Furthermore,  a 
saturation effect for A, was found as  predicted in the literature. 

Recently there has been growing interest in the quantum manifestations of classically 
reguiar and  chaotic dynamical behaviour. In many investigations (Berry and Tabor 
1977, Berry and Robnik 1984, Berry 1983, 1985, Bohigas et al 1984a, b, Bohigas and  
Giannoni 1984, Casati et a1 1985, Haller et a1 1984, McDonald and Kaufmann 1979, 
Pullen and  Edmonds 1981, Seligman et a! 1984, Seligman and Verbaarschot 1985) it 
has been found that the energy spectrum of a quantum system shows different behaviour 
for classically integrable and non-integrable systems in the semiclassical limit. Applying 
a semiclassical quantisation method Berry and Tabor (1977) were able to show that 
the nearest-neighbour spacing ( N N S )  distribution of the energy eigenvalues of an  
integrable system is given by a Poisson distribution. For a non-integrable system, 
however, the eigenvalues are distributed rather regularly and the N N S  distribution 
agrees well with a Wigner distribution. The fluctuation properties of these systems 
coincide remarkably well with the fluctuation properties of the Gaussian orthogonal 
ensemble ( G O E )  if the system has time-reversal symmetry. But it is important when 
looking for such behaviour that one classifies the energy eigenvalues according to the 
symmetries of the underlying system. Only those eigenvalues which belong to the same 
symmetry class show a Wigner distribution and the fluctuation properties of the GOE. 

If one mixes the levels of different symmetries one gets a superposition of uncorrelated 
GOE spectra (Bohigas et a1 1984a, b )  unless there are degeneracies implied by symmetry. 
A frequently used measure for the fluctuations of the eigenvalue sequences is the A3 
function of Dyson and Mehta (1963). Berry (1985) was able to calculate this function 
for regular and chaotic systems. For both types of systems there exists a maximal 
value L,,, such that the A3 function over a range of L mean level spacings with 
1 G L S  L,,, is given by (L/15) for regular systems and  ( (  1 / d )  In L+constant)  for 
chaotic systems. For values of L greater than L,,, the A ,  function saturates non- 
universally at a value determined by short classical periodic orbits. For integrable 
systems this saturation has been observed by Seligman et a1 (1984) and Casati et al 
(1985). In this paper we would like to study the influence of small symmetry breaking 
terms on the energy level distribution of a system whose classical behaviour is almost 
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totally chaotic. It is expected that this symmetry breaking term will superpose different 
level distributions of the original unperturbed Hamiltonian. Since, however, the 
symmetry breaking term does not change the classical chaotic behaviour of the system, 
we expect a transition to a single GOE as the symmetry breaking term gets stronger. 
Another effect of symmetry breaking has been investigated by Bohigas et a1 (1986), 
who studied the transition from GOE to G U E  by breaking the time-reversal symmetry. 

The starting point of our investigation is a system well known in the literature 
(Pullen and  Edmonds 1981, Haller et a1 1984) consisting of two oscillators with a 
quartic coupling term. The Hamiltonian for this system can be written as 

Its symmetry group is denoted by CqL and the eigenfunctions can be divided into five 
symmetry classes indicated by A , ,  A2,  B , ,  B2 and E. The eigenvalues in class E are 
twofold degenerate. The classical behaviour of (1) depends only on the product of 
coupling strength K and energy E ;  the system shows a transition from regular to chaotic 
motion in the interval 0.2 KE 0.6. The N N S  distribution of the corresponding 
quantum system exhibits a continuous transition from a Poisson to a Wigner distribution 
with increasing energy, which reflects the transition from an integrable to a non-  
integrable behaviour in the classical system. 

A symmetry breaking term which destroys the CdL symmetry can be chosen to be 
linear in both coordinates and has the form 

HI = p(q1- 92). ( 2 )  

Applying the canonical transformation py = ( p ,  - p 2 ) / J 2 ,  pI = ( p ,  + p 2 ) / d 2 ,  x = 
( q ,  - q2)/J2, y = ( q ,  + qr ) / J2  the total Hamiltonian H,+ H ,  is transformed to 

(3 )  H = ;p:  + ; p :  +;x‘+;)’2+ K ( X *  - yZ)?+J2px.  

The only symmetry operation that leaves H invariant is y + -y. For a fixed coupling 
strength, K = 0.1, the classical behaviour was studied at the energy E = 10 as a function 
of the symmetry breaking term p. Calculating the dynamical behaviour of phase space 
distances as a function of time for a large number of randomly chosen points on the 
energy surface and from inspecting Poincari sections, we concluded that almost all 
the available phase space (more than 99%) was filled by chaotic trajectories for 
p E [0,2]. This was to be expected because system ( 1 )  with K = 0.1 shows a transition 
from regular to chaotic dynamics in the energy range 2 < E < 6. 

I n  the quantum mechanical calculations we first of all study the Hamiltonian ( 3 )  
in the limit of very small p. The eigenfunctions of the Schrodinger equation can be 
divided into two symmetry classes, with eigenfunction even or odd in y. A possible 
basis for the first symmetry class consists of the eigenfunctions of system (1) which 
transform themselves according to A , ,  B, and those eigenfunctions of which are 
symmetric in y.  The basis of the second class consists of eigenfunctions of A?,  B2 and 
those of E which are odd in y.  In  order to compare the numerical results discussed 
below with analytic distributions we assume that the energy levels of H ,  are only 
slightly disturbed by H , .  In  this case one can calculate the N ~ S  distribution and the 
fluctuation properties. Because we are in an energy regime where the eigenvalues of 
(1) show the properties of GOE spectra, we furthermore assume that the energy spectra 
of system ( 3 )  resemble the superposition of three GOE spectra with weights p ,  = p2 = 4 
(=weight of A , ,  B , )  and p 3 = i  (=weight of E ) .  The N N S  distribution of such a 
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superposition is given by Berry and Robnik (1984): 

with the well known error function erfc(x). 
As a measure of the fluctuations in an interval of length L of the unfolded spectrum 

one commonly uses the A, function of Dyson and Mehta, which in this case takes the 
form (Seligman and Verbaarschot 1985) 

3 

53"( L )  = c 5 3 , G O E ( P J )  ( 5 )  
, = I  

where A 3 , G O E ( ~ )  is the A, function for the GOE. This procedure will be true only if 
the perturbation of the energy eigenvalues by the term p x  is very small. As the symmetry 
breaking gets stronger we expect a transition of the spectral properties to those of a 
single GOE spectrum. 

In order to test these expectations we determined the eigenvalues of the Schrodinger 
equation for system (3) numerically. As a basis for the eigenfunctions of the two 
symmetry classes we used appropriately displaced harmonic oscillator functions and  
ordered these functions in such a way so as to obtain a matrix with small bandwidth. 
The dimension of our matrix was 4000, from which we got about 1000 well converged 
eigenvalues. 

Next we had to unfold the spectra in order to get rid of the variation of the density 
of energy levels. This was done as described by Bohigas and Giannoni (1984). One 
determines the average number of levels up  to the energy E, Na\( E )  and replaces the 
levels E, by E ,  = Na, (  E , ) .  From the sequence { E , } ,  which has constant N N S  in the mean, 
we calculate the histograms for the N N S  and the A3 function. 

We first discuss the behaviour of the N N S  distribution as a function of p. Note 
that the classical fraction of phase space filled by chaotic trajectories in the energy 
range discussed below is always greater than 0.99. In figure 1( a )  the case for p = 0 is 
shown, and  one can see that the histogram obtained from the numerically determined 
spectrum agrees very well with the theoretical result for three superposed uncorrelated 
GOE spectra with appropriate weights. As p increases the first significant deviations 
from this behaviour occur for p 2 0.02 (in the energy range considered here). In figure 
l ( b )  we show the example p =0.03 where the most obvious differences appear at very 
small values of S, which indicates the level repulsion property of the spectrum. For 
p 2 0.02 the N N S  distribution could be fitted very well by the Brody distribution (Brody 
1973) which interpolates by an additional parameter q between a Poisson ( q  = 0) and  
a Wigner distribution ( q  = 1). This additional parameter has no direct physical meaning 
but gives a better fit to the numerical spectrum compared to the formula of Berry and  
Robnik (19841, especially for small level spacings (Wintgen and Friedrich 1987). The 
parameter 9 which gives the best fit depends on p and on the energy range considered. 
For p =0.03 we find 9 =0.48 (figure l ( b ) ) ,  while for p 20.3 one has q = 1, and the 
histogram agrees almost perfectly with a Wigner distribution (see figure l ( c )  for 
p = 1.0). This behaviour does not change as p increases still further. The results for 
the A, function are given in figure 2. For p = 0 the theoretical (equation (5)) and 
numerical results agree u p  to L 2 20, but for larger L the A3 function determined from 
the spectrum lies significantly lower than expected. This indicates that the level 
fluctuations are suppressed for large values of L. This can already be seen in the 
unperturbed system (1) for which the energy levels were calculated for different 
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Figure 1. Nearest-neighbour spacing distribution P ( s )  for system (3)  with K = 0.1 calculated 
from levels in the energy range (30-100) for ( a )  ( p  = O ) ,  (70-110) for ( b )  ( ~ = 0 . 0 3 )  and 
(30-100) for ( c )  ( b  = l,O), using levels with positive and negative parity. The full curve 
gives a Wigner distribution, the broken curve a superposition of three Wigner distributions 
with weights (4, i, a )  and the chain curve shows the Brody distribution with q = 0.48. 

symmetry classes and found also to saturate in the A, function. A similar result has 
been found by Zimmermann et a1 (1987). The saturation in the A3 function was also 
predicted by Berry (1985) using semiclassical methods. Therefore equation ( 5 ) ,  which 
does not take into account this saturation effect, is valid only up to some L,,,. As p 
increases, the A3 function decreases and its values are between a superposition of three 
GOE and a single GOE. For p 3 0.02 the A, function agrees very well with the expression 

where q is the Brody parameter determined by fitting the NNS. In figure 3 we show 
the result for the A, function, which was calculated for p = 0.03 and 0.1 from the 
eigenvalues in the energy range 70 E 110. 

For p 3 0.3 and L s  L,,, the agreement with a single GOE is remarkably good. 
With increasing p the value L,,, decreases and the A3 function saturates earlier (see 
figure 2 for p = 1.0). 

In conclusion we have shown that a symmetry breaking term in a classically chaotic 
system may change drastically the N N S  distribution and the fluctuation properties of 
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Figure 3. The same as  figure 2 .  3 shows the case p = 0.03 and  x shows p 2 0.1. The chain 
curce shows the function (61, where the Brody parameter was determined by fitting the 
corresponding histograms ( q  = 0.50 for /L = 0.03 and 9 = 0.72 for p = 0.1 ) 
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the corresponding quantum system. These changes have no counterpart in the classical 
system. As the symmetry breaking gets stronger the spectrum rearranges and one finds 
a Wigner distribution for the N N S  as well as the fluctuation properties of the GOE. For 
large values of 15, however, the .A3 function saturates as theoretically predicted (Berry 
1985). 
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